
Final Project: NBA Fantasy Score Prediction

Connor Young (cey23), Andrew Koo (alk272), Saloni Gandhi (sg2452)
CS5785: Applied Machine Learning

Fall 2020
Cornell Tech

New York, NY 10044

Abstract

In order to succeed as a DFS player, one has to complete two difficult tasks: (1)
accurately predict each player’s value and (2) strategically select a lineup based
on one’s beliefs. The DFS world has advanced considerably in recent years with
the widespread adoption of optimization methods and published research about
selection strategies to solve the second problem. However, the first problem of
prediction remains unsolved and highly subjective. We present methods to apply
machine learning for prediction of player fantasy values using only free and
open-sourced tools and data. Ultimately, we train XGBoost trees and achieve
a performance 8.58% greater than the default projection native on the fantasy
platform. Additionally, we reflect on the features driving this performance and
identify opportunities for qualitative insights to further improve results.

1 Introduction

In this paper we explain the process of developing a machine learning model to predict perfor-
mance of NBA players in regular-season games. These projections come in the form of a player’s
stat-line for the game (points, assists, etc.) and an associated fantasy score. We will cover the
background necessary to understand this work, problem formulation and feature decisions, a com-
parison of the different model types that were tested, and key takeaways from the results. We will
also touch on how the results fit with prior work in the area and inform future work.

2 Background

In order to understand the context of the results, a brief primer is needed on Daily Fantasy Sports
(DFS) and the National Basketball Association (NBA). DraftKings, a dominant player in the DFS
market, runs thousands of contests daily where users select a “lineup” of real-life professional
athletes. These athletes receive a “fantasy score” based on their performance, or stat-line, in their
game that day, and the contest is won by the entrant(s) with the highest combined fantasy score
across all the players in their lineup. In the NBA specifically, players are scored based on their
amount of points (PTS), rebounds (TRB), assists (AST), steals (STL), turnovers (TOV), 3-pointers
made (3P), and blocks (BLK), with a different weight assigned to each. In order to prevent entrants
from just selecting the top players in the NBA for their lineup, DraftKings enforces constraints on
player positions and a salary cap of $50,000 on the draft, with better players costing more. Thus,
the crux of the problem is in trying to determine and predict fantasy scores for all players so that
the most efficient lineup can be constructed in terms of fantasy value per salary unit.

Applied Machine Learning Project Report. Fall 2020.

3 Method

Existing attempts at applying machine learning to fantasy value projection involve directly predict-
ing a player’s fantasy score from a set of player features. However, based on the observation that
fantasy scores are a known linear combination of stat-lines and weights, we hypothesize that build-
ing custom models for each base statistic and using those predictions as inputs for the fantasy score
would be a more precise model for fantasy predictions. In the DFS industry, there are three major
players (DraftKings, FanDuel, and Yahoo!), each of which computes their fantasy score slightly
differently. For the purposes of this project, we decided to focus on DraftKings predictions as it
is the largest platform with the most external data and available research, but our findings should
generalize to other fantasy platforms as well.

3.1 Data Collection and Preparation

We selected StatHead as our primary data source for player stat-lines. StatHead offers free, high-
quality player stat-lines from 1946 - present, but does not currently support exporting data at scale.
To work around this, we built a Python web scraper utilizing Selenium to collect data from the past
6 seasons (2014 - present, resulting in 163270 stat lines in total). We one-hot encoded non-ordinal
data (such as Team and Opponent) and label-encoded ordinal and binary categorical columns (such
as Home/Away). During our initial data cleaning, we decided to remove playoff games and players
who played no minutes to simplify the game environment to model.

3.2 Feature Engineering

We structured time-series stat-line data into multiple rolling average features to represent short-
and long-term trends. We also explicitly modeled aspects of sports commentary into our features
so that we can measure their predictive power compared to purely historical, trends-based features.

The list of features that we created based on our research and sports experience include:
Team: The current team a player is on
Opponent: The opponent a player is facing
Home or Away: Whether the game is home or away
Position: What position the player plays
Rolling averages of each individual player stat over 3, 5, and 10 game windows (i.e. points scored
over last 3 games, points scored over last 5 games, points scored over last 10 games, rebounds over
last 3 games, rebounds over last 5 games, rebounds over last 10 games, etc.). There are a total of
24 individual player stats we are measuring, resulting in 72 additional features.
Odds: The probability of the player’s team winning this game, according to Vegas betting odds

3.3 Model Selection

We considered various approaches for formulating the problem, including predicting the fantasy
score directly, training models on solely a player’s personal history versus the entire league’s his-
tory, lineup position-based models, team-based models, and more. Ultimately, we trained one
regression model per statistic using league-wide data and then computed fantasy score from the
seven key stat predictions using the DraftKings fantasy score formula. In terms of the machine
learning regression model selection, we prioritized models which perform well on high-level struc-
tured data (both discrete and continuous) and which could facilitate interpretation of feature im-
portance. Based on these criteria, we test two models: random forest (sklearn) and regularized
gradient boosted trees (XGBoost).

3.4 Training and Tuning

We split the full dataset into three partitions: the train, dev, and test sets. The train set contains
our first four seasons of data, the dev set contains the next season, and our test set contains the
last season. By splitting the data based on seasons (rather than via randomized split) we can po-
tentially observe whether the model generalizes across time. We trained our models on the train
set and tuned model hyperparameters using grid search, evaluating periodically by comparing the
generalization of the train set’s mean squared error to the dev set’s mean squared error.

2

3.5 Evaluation and Benchmarking

In practice, DFS participants are given each eligible player’s salary, positions, and fantasy points
per game (FPPG), where FPPG is a simple long-term average of that player’s fantasy performance.
We recomputed a proxy for this given metric as a 20-game moving average of fantasy score and
benchmarked our algorithm’s mean squared error against the 20-game moving average’s mean
squared error. In addition to measuring the model’s quantitative performance on the test set, we
examined the feature importances in our final model to gain qualitative understanding of relative
feature impact on the final result.

4 Experimental Analysis

We split our experiment analysis into two main sections: (1) comparing a single model which pre-
dicted a fantasy score to seven dedicated models, each of which predicted a single player statistic;
and (2) comparing the performance of different machine learning models, specifically seven ran-
dom forest regressors to seven XGBoost tree regressors. The goal in the first section is to test our
hypothesis that decomposing the fantasy score prediction problem into stat line subproblems will
improve model accuracy. The goal in second section is to optimize the XGBoost machine learning
ensemble via hyperparameter tuning to outperform the out-of-box random forest ensemble.

Table 1: Final R2 Values of Various Model Types on Data Sets

Single Random Forest Seven Random Forests XGBoost
Statistic Train Dev Test Train Dev Test Train Dev Test
Points

0.909 0.335 0.330

0.931 0.522 0.527 0.511 0.527 0.531
Rebounds 0.927 0.488 0.472 0.484 0.498 0.486

Assists 0.935 0.512 0.522 0.541 0.525 0.535
Steals 0.877 0.104 0.079 0.144 0.143 0.125

Turnovers 0.900 0.301 0.310 0.300 0.325 0.331
3-Pointers 0.908 0.331 0.326 0.354 0.352 0.341

Blocks 0.890 0.199 0.184 0.225 0.234 0.229

Table 2: Evaluation of Models vs. Benchmark

Single Random Forest Seven Random Forests XGBoost
Metric Dev Test Dev Test Dev Test

Model MSE 93.156 94.605 91.354 93.183 90.407 92.269
Benchmark

MSE
94.939 100.931 94.939 100.931 94.939 100.931

Improvement 1.783 6.326 3.585 7.748 4.533 8.662

4.1 One Random Forest vs. Seven Random Forests

In our original discussion, we hypothesized that seven random forests should outperform one
random forest by simplifying the training process for each forest. Preliminary results validate our
hypothesis, as the one random forest model slightly under-performs the seven dedicated random
forest models.

This result is consistent with our intuition, as rather than requiring one model to learn the idiosyn-
crasies of each stat line prediction and also the relationship between each stat line, we instead task
seven models to each learn just one stat line’s behavior. Despite the improvement, the marginal
gain was relatively small compared to the total improvement over baseline. After examining the
most important features driving our best models (Table 3), this outcome makes sense as we see
that only one or two features dominate each prediction model. In other words, we believe that each

3

dedicated model was sufficiently simple with the given set of features that the single random forest
was able to capture a majority of the same insight.

4.2 Seven Random Forests vs. Seven XGBoost Models

Following the experiment in section 4.1, we observed that while seven random forests performed
well on the dev set compared to baseline, the default forests had high variance resulting in overfit-
ting, as indicated by the large decrease in R2 scores from train to dev.

Due to this, we attempted to improve our prediction accuracy by utilizing a more complex and
difficult-to-tune model: XGBoost’s gradient boosting algorithm. This model does not have as con-
sistently good out-of-box performance as random forest, but has the potential to perform much
better if hyperparameters are tuned correctly. Gradient boosting machines (GBM) differ from ran-
dom forests in how they build their trees. In random forests, each tree is built independently and
results are combined at the end to develop an average model. In GBMs, trees are built sequen-
tially, combining results along the way so that the following tree improves upon the errors of the
previous.

XGBoost’s implementation of gradient boosting uses a more regularized model formalization than
other GBMs, which helped with the overfitting problem realized in the random forest approach.
Evidence of this can be seen in comparing the R2 scores for XGBoost on the train versus dev set,
where the difference is much smaller than the random forest implementations. On some statistics,
the XGBoost implementation is actually more accurate on the dev set than the train.

To tune our hyperparameters, we conducted a grid search on the following fields:

colsample_bytree, learning_rate, max_depth, min_child_weight, n_estimators, objective, subsample

Through careful tuning of the seven XGBoost models, the ensemble outperformed the default
random forests and generalized well to the dev set. Finally, we tested all models on the test set and
confirmed that the XGBoost model generalized the best to the test set as expected.

4.3 Analysis of XGBoost Feature Importances

Table 3: Feature Importance for Prediction of Various Statistics

Points Rebounds Assists Steals

Turnovers 3-Pointers Blocks

In addition to creating a highly performant model, another motivation for this project was to com-
pare the influence of quantitative player trends versus the qualitative traits that drive sports narra-
tives, such as matchups. By visualizing the top 5 most important features in our tuned XGBoost
models (Table 3), we see that the quantitative rolling average features across 10 games were the
strongest for their respective statistic. For example, the strongest predictor for blocks by large
margin was simply the rolling 10-game average of blocks by that player.

4

Player statistics that have inherently higher volume, such as points, assists, and total rebounds
were generally the most predictable (as given by the R2 scores in Table 1). Consequently, this also
enabled shorter rolling timelines to be useful in their predictions. Conversely, metrics with smaller
volumes such as steals were too inconsistent to be measured on shorter timelines, and all the purely
quantitative features struggled to reliably predict these metrics. Interestingly, for higher variance
metrics the models attributed importance to qualitative, discrete features. For example, the one-hot
encoded team feature for the Golden State Warriors, a team known for its long-range shooting, rose
to the top-5 features of the 3-point prediction model. This may indicate an opportunity to include
customized qualitative features for these models to better determine low-volume statistics in the
future.

5 Discussion, Prior Work, and Future Work

DFS is a large and rapidly growing industry, evidenced by market leader DraftKings reporting
42% year-over-year growth with revenues of $133 million in its most recent quarterly earnings
(DraftKings 2020). Increased interest has pushed participants to develop advanced techniques in
this highly competitive environment, especially with regards to optimizing lineup selection strate-
gies. One research lab achieved success by formulating lineup selections as a type of covering
problem (Hunter 2016).

On the prediction side of DFS, a host of sites such as Daily Fantasy Nerd have evolved to offer
paid services, however projecting player values remains largely opinionated. Previous attempts
at employing machine learning models to directly solve this problem have been met with mixed
results (Harner 2020). In this project, we decomposed the prediction problem into seven subprob-
lems which improved our model’s accuracy. Via this decomposition, we identified that the biggest
errors in fantasy score predictions stems from low volume statistics. This presents an opportunity
to augment those models with idiosyncratic qualitative features in the future, such as opponent
matchups or defensive rank. As a tangential extension of error analysis, we may also use our
model to measure marginal impacts of irregular events such as playoff games or the shift to the
NBA "Bubble" on fantasy score expectations.

6 Conclusion

With our best model (XGBoost) we were able to improve upon DraftKings published projections
by 8.58%. An example of a selected contest lineup using our model is shown in Table 4 below, and
one can see how our projection compares to DraftKing’s projections and to actual performance.
This lineup was created by plugging our score projections into a linear programming tool that max-
imizes fantasy score within the $50,000 salary cap and positional constraints of the contest. The
salary and performance data comes from a random, real contest from November 2019. Although
our model still deviates from true performance, it correctly predicts the increase in relation to the
default projections. In addition, it picks a roster that achieves an overall actual score of 337, which
is more than enough to place in the money for an average DraftKings contest.

Table 4: Example of an Optimal Lineup Constructed Using XGBoost Model Output

Player Name Position
Slot

DK
Salary

DK
Projection

Model
Projection

Actual
Score

Jordan Clarkson PG $3,800 22.375 24.378 33.50
Luka Doncic SG $9,700 61.825 61.553 73.75
Bruce Brown SF $3,100 20.738 22.468 9.25

Giannis Antetokounmpo PF $10,900 62.488 63.058 58.00
Andre Drummond C $9,500 48.838 54.813 67.00

Marcus Smart G $4,900 26.688 28.208 21.75
Jordan Poole F $3,200 17.675 24.083 23.00

Marcus Morris Util $4,800 31.313 31.985 50.75
Total - $49,900 291.938 310.543 337.00

5

References

[1] Basketball Reference, 2020, basketball-reference.com.
[2] “DraftKings NBA Classic Rules.” DraftKings, 2020,

www.draftkings.com/help/rules/nba.
[3] Barry, Christopher, et al. Winning the Draft: Maximizing Value in Daily Fantasy Sports. 2016,

web.stanford.edu/class/stats50/projects16/BarryCanovaCapiz-slide.pdf.
[4] Harner, Nate. “Creating a Fully Automated Daily Fantasy

Sports Strategy.” Medium, Towards Data Science, 12 May 2020,
towardsdatascience.com/creating-a-fully-automated-daily-fantasy-sports-
strategy-6842d2e1ccb6.

[5] Du, Alan. “Daily Fantasy Basketball - DraftKings NBA.” Kaggle, 29 Dec. 2017,
www.kaggle.com/alandu20/daily-fantasy-basketball-draftkings.

[6] Goldstein, Omri. “NBA Players Stats since 1950.” Kaggle, 27 Apr. 2018,
www.kaggle.com/drgilermo/nba-players-stats?select=player_data.csv.

[7] “Sportsbook Reviews.” Historical NBA Scores and Odds Archives, 2020,
www.sportsbookreviewsonline.com/scoresoddsarchives/nba/nbaoddsarchives.htm.

[8] “Daily Fantasy Projections.” Sports Analytics Group Berkeley, 2020,
sportsanalytics.berkeley.edu/fantasyprojections.html.

[9] “Historical Basketball Statistics.” Stathead.com, 2020, stathead.com/basketball/.
[10] “Historical DraftKings Contest Data.” Daily Basketball Points, 2020,

rotoguru1.com/cgi-bin/hyday.pl?game=dk.
[11] Hunter, David, et al. Picking Winners Using Integer Programming. 2016,

mitsloan.mit.edu/shared/ods/documents/?DocumentID=2858.
[12] Don Cazentre. “Daily Fantasy Sports Contests Are Illegal in NY, Court Rules.”

Newyorkupstate, 6 Feb. 2020, www.newyorkupstate.com/sports/2020/02/daily-fantasy-
sports-contests-are-illegal-in-new-york-court-rules.html.

[13] DraftKings Inc. “DraftKings Reports Third Quarter Results and Raises 2020 Rev-
enue Guidance.” GlobeNewswire News Room, "GlobeNewswire", 13 Nov. 2020,
www.globenewswire.com/news-release/2020/11/13/2126388/0/en/DraftKings-Reports
-Third-Quarter-Results-and-Raises-2020-Revenue-Guidance.html.

[14] Płoński, Piotr. “Does Random Forest Overfit?” MLJAR, Piotr Płoński, 5 Apr. 2019,
mljar.com/blog/random-forest-overfitting/.

[15] Glen, Stephanie. “Decision Tree vs Random Forest vs Gradient Boosting Machines:
Explained Simply.” Data Science Central, 28 July 2019,
www.datasciencecentral.com/profiles/blogs/decision-tree-vs-random-forest-vs-
boosted-trees-explained.

[16] Jain, Aarshay. “XGBoost Parameters: XGBoost Parameter Tuning.”
Analytics Vidhya, 1 Mar. 2016, www.analyticsvidhya.com/blog/2016/03/complete-guide-
parameter-tuning-xgboost-
with-codes-python/.

6

	Introduction
	Background
	Method
	Data Collection and Preparation
	Feature Engineering
	Model Selection
	Training and Tuning
	Evaluation and Benchmarking

	Experimental Analysis
	One Random Forest vs. Seven Random Forests
	Seven Random Forests vs. Seven XGBoost Models
	Analysis of XGBoost Feature Importances

	Discussion, Prior Work, and Future Work
	Conclusion

